(Updated:
)
-
Post a Comment
Integration of tan x
Integration of tanx - In this paper, we will discuss how to integrate the following tan (x).
The technique used is the integration of substitution techniques.
$$ ∫ tan(x) \ dx = ∫ \frac{sin(x)}{cos(x)} \ dx $$
Notice the integran on the right, we can assume u = cos (x) because the derivatives of cos (x) are -sin (x).
If u = cos (x) then du = -sin (x) dx so we get:
$$ \begin{align} ∫ tan \ (x) \ dx &= ∫ \frac{sin \ (x)}{cos \ (x)} \ dx \\ &= -∫ \frac{du}{u} \\ &= -ln \ (u) \\ &= -ln \ (cos \ x) \end{align} $$So, $ ∫ tan \ (x) \ dx = -ln \ (cos \ x) + C $
Note:
$ ∫ \frac{1}{x} \ dx = ln \ (x) + C $
ln: natural logarithm.
Hopefully this article, Integration of tanx, useful for readers.
Subscribe to:
Post Comments (Atom)
Post a Comment for "Integration of tan x"