Ξ
×

Integration of tan x

Integration of tanx - In this paper, we will discuss how to integrate the following tan (x).

The technique used is the integration of substitution techniques.

tan(x) dx=sin(x)cos(x) dx

Notice the integran on the right, we can assume u = cos (x) because the derivatives of cos (x) are -sin (x).

If u = cos (x) then du = -sin (x) dx so we get:

tan (x) dx=sin (x)cos (x) dx=duu=ln (u)=ln (cos x)

So, tan (x) dx=ln (cos x)+C

Note:

1x dx=ln (x)+C

ln: natural logarithm.

Hopefully this article, Integration of tanx, useful for readers.

Integration of tanx

Post a Comment for "Integration of tan x"